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Abstract. The ratio of spin-flip to non-flip intensity in low-energy electron energy-loss
spectroscopy for multiplicity-changing transitions within the 3d multiplet in NiO and CoO can be
found exactly. It is shown to be independent of scattering geometry, incident energy and multiple
scattering if well-defined local spins are assumed. For non-multiplicity-changing transitions this
ratio can be calculated approximately, usingR-matrix techniques. The angular dependence of
the scattering processes at low kinetic energies of the incident electron can be understood in
terms of the point group symmetry at the target ion and the contribution of dominant angular
momentum components to incoming and outgoing electron waves.

Electron energy-loss experiments provide a detailed probe of the electronic structure of
solids, and in this letter we discuss the interpretation of low-energy EELS (LE-EELS)
experiments on transition metal oxides. When the electron beam energy is much greater
than the excitation energy, dipole scattering dominates and a description in terms of the
Born approximation for both direct and exchange scattering can be used. However, this
description is no longer valid at incident electron energies of less than 100 eV (say), where
multiplet effects are apparent in the spectrum. In our work we study low-energy electron
scattering from oxides, using a local description of scattering from the transition metal ion
treated as a many-body system.

Recent experiments on NiO using polarized low-energy electron beams [1, 2], and earlier
spin-averaged experiments [3, 4], show a substantial degree of dependence on the incident
electron energy, including resonance effects, and a dependence on the type of excitation
being studied (bulk versus surface, and excitations to states with different spin multiplicity
or cubic symmetry index). In a Born treatment of dipole scattering from an atom [5], both
direct and exchange amplitudes (f and g respectively) fall off with increasing scattering
angle,f falling off much more rapidly. In non-dipole scattering from transitions within
the d multiplet, there is much more complicated angle dependence, which depends on the
particular transition.

As dipole and spin-selection rules are no longer valid, in this letter we shall look
for new symmetry rules by considering the angular behaviour of spin-flip and non-flip
differential scattering cross sections for excitations within the 3d multiplet. We will see
that a classification is possible on the basis of the point group symmetry and spin of the
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final state of the transition metal ion (Ni2+ and Co2+). This is a generalization of the work
by Goddardet al who have studied selection rules in electron-impact spectroscopy for free
atoms (and molecules) [6].

Our theoretical description of the loss processes in low-energy EELS is based on a
generalization ofR-matrix theory [7–9] to solid-state systems. The central idea inR-matrix
theory is to separate space into an inner region, where the scattering electron fully interacts
with the target ion (for example Ni2+), and an outside region, where the electron moves in
an effective field. To generalize to solid-state systems like NiO we include the effects of
hybridization of oxygen ligands with the 3d orbitals on the central Ni2+ ion. This is done
in an effective way by applying a parametrized crystal-field potential and a scaled Coulomb
potential (factor 0.7 [9–11]) in the inner region. The form of the crystal-field potential in
terms of spherical harmonicsYlml is

Vc(r, θ, φ) = βr4

[
Y40+

(
5

14

)1/2

(Y44+ Y4−4)

]
+ VM. (1)

β is fitted (graphically) in anN -electron target calculation to reproduce the electron energy
losses in LE-EELS, andVM is a constant energy shift due to the Madelung potential, fitted to
Hartree–Fock band-structure calculations [12]. Our values forβ andVM are 0.0418 Hartree
and 0.75 Hartree respectively.

In the cubic representation the expression for the differential scattering cross section
(see also [13]) can be written as follows:
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and where(SMS |SiMSi
1
2m) is a Wigner coefficient. Herep is the magnitude of the

momentump of the incident electron.P, p1, and p2 indicate the cubic symmetries of
respectively the compound state(target+ electron) with spin S and spin componentMS ,
the targeti with spin Si and spin componentMSi , and the scattering electron with spin
componentm and angular momentuml;h indicates that different cubic symmetriesp2 can
be associated with eachl. nα gives the degeneracy of the incoming channel and is equal to
2Si + 1, assuming a completely polarized beam of incoming electrons. The brackets in this
equation have the following meaning:{
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This bracket depends on the angle of the incoming electron beamp̂, with momentump,
and contains the coefficientsbp2µ2

hlml
which transform (Condon–Shortley) spherical harmonics
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Ylml into real cubic harmonics, and cubic Clebsch–Gordan coefficients(PMP |p1µ1p2µ2).
MP ,µ1, and µ2 are the basis function indices for the cubic symmetriesP, p1, and p2

respectively. The scattering properties of the target are contained in theT -matrix elements
〈φ̃0
i ′(p′1)p

′
2h
′l′ |T |φ̃0i(p1)p2hl

〉 that describe the scattering from channel|φ̃0i(p1)p2hl
〉 into channel

|φ̃0
i ′(p′1)p

′
2h
′l′ 〉 [9]. The channelsφ̃0 are symmetrized combinations of a target state and

the spin and orbital part of the scattering electron wavefunction. In this evaluation of the
differential cross section, we have averaged over the ionic spins, because NiO and CoO have
a multi-domain structure [14, 15]. The spins are therefore effectively randomly oriented
with respect to the spin-quantization axis of the incoming electrons even below the Néel
temperature.

Just from the local point group symmetry and the properties of the Wigner coefficients
[16], several general results can be derived. We begin by considering the spin-polarized
differential cross sections of NiO, where the spin-flip to non-flip ratio of the cross section
may be calculated. In equation (2) only certain combinations of Wigner coefficients are
non-vanishing. Thus for the multiplicity-changing transitions from the triplet ground state
with Si = 1 to a singlet excited state withSi ′ = 0, for the non-spin-flip transitions the only
non-vanishing combination is( 1
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which equals2
3. This means that the spin-flip to non-flip ratio is 2. This conclusion is

independent of the scattering geometry, and the local symmetry at the Ni2+ ion—Oh (bulk
Ni2+ ion) or C4v (surface Ni2+ ion). It remains valid for multiple elastic scattering by other
ions in the outer region. It also remains valid for largerR-matrix inner regions (e.g. with
a NiO10−

6 cluster instead of a Ni2+ ion), as long as the spin is well defined within the
inner region. For CoO, which has a different electronic configuration (d7 instead of d8

in NiO), we arrive at an identical conclusion: here also the spin-flip to non-flip ratio for
multiplicity-changing transitions is independent of the scattering geometry, local symmetry,
and multiple scattering, and is again two. This remarkable conclusion holds only for the
multiplicity-changing transitions; for triplet–triplet transitions in NiO and quartet–quartet
transitions in CoO, the behaviour of the spin-flip to non-flip ratio is more complicated and
has to be calculated explicitly.

In figure 1 we illustrate the contribution of spin-flip and non-flip scattering to particular
loss transitions in LE-EELS from NiO(001), calculated using ourR-matrix method. Here
the incoming scattering angles(θi, φi) remain fixed atφi = 0 and θi = 45◦, whereφi
is measured with respect to the (100) axis andθi is the angle with respect to the surface
normal. The orientation of the outgoing polar angleθf is then varied(φf = 180◦) and the
intensity of both the spin-flip and non-flip contributions is plotted. The results in figure 1(a)
agree with the above statement that the spin-flip contribution to the multiplicity-changing
transitions is double the non-spin-flip one. In the triplet–triplet transitions on the other hand
the non-flip transitions are stronger (figure 1(b)) and the spin-flip to non-flip ratio changes
with scattering angle. For example, in forward-scattering geometry the non-flip intensity is
about two times the flip intensity, whereas at scattering angle= 125◦ it is eight times the
flip intensity. It would be useful to measure the spin-flip to non-flip ratio for the triplet–
singlet transitions, because deviations from 2 presumably come from non-locality of the
Ni2+ spin. It may, however, be difficult to extract the exact ratios in experimental studies,
due to backgrounds of surface states, defect states [1], and charge-transfer excitations across
the surface and bulk band gap which show different scattering behaviour.

We now turn from arguments based on spin to the effects of spatial symmetry on LE-
EELS spectra and consider those scattering events with incoming and outgoing electron
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Figure 1. The spin-flip (circles) and non-flip (diamonds) differential cross sections for two
transitions in NiO (a)3A2g → 1T1g (3.28 eV energy loss) and (b)3A2g → 3T1g (1.75 eV
energy loss). The scattering angle is with respect to the forward-scattering direction and is
related to the outgoing polar angle:θf = 135◦ − scattering angle. Note thatθi = 45◦, φi = 0◦,
andφf = 180◦. They-axis is in units ofa2

0.

beams in one scattering plane. The symmetry elements of the point group define which
scattering planes are equivalent and also determine the special geometries for which the
cross sections must be zero. This latter type of ‘symmetry rule’ follows when the ingoing
and outgoing electron beams are oriented in parallel fashion along a particular symmetry
axis, or in a particular mirror plane. For example, atθi = 45◦, φi = 0◦, the excitations to
the A1g and T2g multiplet states show zero intensity for backward and forward scattering,
whereas the other excitations have finite probability in these geometries.

This follows from the transformation properties of the final states and the corresponding
matrix elements. For example〈p′A1g|T |pA2g〉 must be invariant under a twofold rotation
along the direction of incidence. In this case the A2g (ground) state changes sign under
rotation, but the A1g state is unaffected. If the momenta are both parallel to the symmetry
axis this leads to a sign change of the matrix element, and consequently the matrix element
must be zero for forward- and backward-scattering geometry. The other excitations have
final states with different transformation properties and therefore do not necessarily show
zero intensity under these conditions. Again the conclusions are not changed if a bigger
cluster is used to describe the scattering process (for example NiO10−

6 ) or if multiple-
scattering effects are taken into account.

To illustrate this spatial symmetry rule, figure 2 shows the differential cross sections
calculated from equation (2) as a function of scattering angle for a number of final states.
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Figure 2. The non-flip differential cross sections for NiO corresponding to transitions from the
ground state3A2g to final states with symmetry1T1g (a) and to a final state with symmetry1A1g

in (b). The loss energies in (a) are 3.28 eV (squares), 3.13 eV (triangles), and 1.75 eV (circles).
The loss energy in (b) is 2.80 eV. The definition of the axes is the same as in figure 1.

The incoming electron beam is oriented along the [101] axis, i.e. withθi = 45◦, φi = 0◦.
It is clear from figure 2(a) that final states with the same symmetry (here T1g) have cross
sections which vary in a similar way. In this case the cross sections are clearly non-zero
in forward- and backward-scattering geometries, with an angular behaviour dominated by
l = 2 outgoing electron angular momentum. Figure 2(b) shows results for an A1g final
state, and the cross sections do indeed go to zero in forward- and backward-scattering
geometries; once again the dominant contribution is due tol = 2. Thus the final-state
symmetry determines the zeros in the cross section at certain symmetry-related angles.

For a more detailed description of the angle dependence, the contribution of each value
of electron angular momentum to theT -matrix should be considered. TheT -matrix elements
coupling the incident electron angular momenta tol greater than 2 for the outgoing electrons
are small, and this is compatible with the d-wave form of the scattering shown in figure 2.
This is presumably a consequence of the negligible weight of larger values of angular
momentum in wave packets corresponding to the 20 eV scattering electrons that we consider
here. This means that very rapid angular variations in the differential cross section, when
considering for example scattering geometries close to specular (see in particular figure 2(a)
in [4]), cannot be explained in terms of our single-scattering description. This variation
must be the result of additional multiple elastic scattering (before or after the inelastic
collision with the Ni2+), thus providing coupling to higher electron angular momenta. It
would certainly be interesting to follow the angular variation more closely in experiments,
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in particular orienting the incoming electron beam along a symmetry axis, and measuring
the outgoing electron beam over a large range of polar angles in the same scattering plane.
This could yield extra information about the final-state symmetry in various excitations, the
contribution of different electron angular momentum components to the cross section, and
the importance of multiple scattering.

We are grateful to Professor J A D Matthew and Dr O Gunnarsson for helpful discussions.
The work was supported by the European Union HCM network ERBCHRXCT940438, ‘The
electronic structure of strongly correlated systems’.
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